Arbitrarily tunable orbital angular momentum of photons
نویسندگان
چکیده
Orbital angular momentum (OAM) of photons, as a new fundamental degree of freedom, has excited a great diversity of interest, because of a variety of emerging applications. Arbitrarily tunable OAM has gained much attention, but its creation remains still a tremendous challenge. We demonstrate the realization of well-controlled arbitrarily tunable OAM in both theory and experiment. We present the concept of general OAM, which extends the OAM carried by the scalar vortex field to the OAM carried by the azimuthally varying polarized vector field. The arbitrarily tunable OAM we presented has the same characteristics as the well-defined integer OAM: intrinsic OAM, uniform local OAM and intensity ring, and propagation stability. The arbitrarily tunable OAM has unique natures: it is allowed to be flexibly tailored and the radius of the focusing ring can have various choices for a desired OAM, which are of great significance to the benefit of surprising applications of the arbitrary OAM.
منابع مشابه
Deterministic qubit transfer between orbital and spin angular momentum of single photons.
In this work we experimentally implement a deterministic transfer of a generic qubit initially encoded in the orbital angular momentum of a single-photon to its polarization. Such a transfer of quantum information, which is completely reversible, has been implemented adopting an electrically tunable q-plate device and a Sagnac interferometer with a Dove prism. The adopted scheme exhibits high f...
متن کاملQuantum Router for Single Photons Carrying Spin and Orbital Angular Momentum
Quantum router is an essential element in the quantum network. Here, we present a fully quantum router based on interaction free measurement and quantum dots. The signal photonic qubit can be routed to different output ports according to one control electronic qubit. Besides, our scheme is an interferometric method capable of routing single photons carrying either spin angular momentum (SAM) or...
متن کاملIncreasing the dimension in high-dimensional two-photon orbital angular momentum entanglement
Any practical experiment utilizing the innate D-dimensional entanglement of the orbital angular momentum (OAM) of photons is subject to the generation capacity of the entangled photon source and the modal capacity of the detection system.We report an experimental spontaneous parametric-down-conversion system able to generate and detect tunable high-dimensional OAM entanglement. By tuning the ph...
متن کاملOrbital angular momentum of entangled counterpropagating photons.
We elucidate the paraxial orbital angular momentum of entangled photon pairs generated by spontaneous parametric downconversion in different noncollinear geometries in which the entangled photons counterpropagate. We find, in particular, the orbital angular momentum of entangled pairs generated in transverse-emitting configurations, in which none of the known rules for selecting orbital angular...
متن کاملMode counting in high-dimensional orbital angular momentum entanglement.
We study the high-dimensional orbital angular momentum OAM) entanglement contained in the spatial profiles of two quantum-correlated photons. For this purpose, we use a multi-mode two-photon interferometer with an image rotator in one of the interferometer arms. By measuring the two-photon visibility as a function of the image rotation angle we measure the azimuthal Schmidt number, i.e., we cou...
متن کامل